This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applications in metal and metal oxides nanocrystals synthesis and semiconductor nanostructures fabrication. The book comprises theoretical and experimental analysis of laser ablation in liquids, research methods, and preparation techniques.
processes of laser ablation in liquids, and its applications in metal and metal oxides nanocrystals synthesis and semiconductor nanostructures fabrication. The book comprises theoretical and experimental analysis of laser ablation in liquids, research methods, and preparation techniques.

This book primarily covers the fundamental science, synthesis, characterization, optoelectronic properties, and applications of metal oxide nanomaterials. It discusses the basic aspects of synthetic procedures and fabrication technologies, explains the related experimental techniques and also elaborates on the current status of nanostructured oxide materials and related devices. Two major aspects of metal oxide nanostructures - their optical and electrical properties - are described in detail. The first five chapters focus on the optical characteristics of semiconducting materials, especially metal oxides at the nanoscale. The following five chapters discuss the electrical properties observed in metal oxide-based semiconductors and the status quo of device-level developments in a variety of applications such as sensors, transistors, dilute magnetic semiconductors, and dielectric materials. The basic science and mechanism behind the optoelectronic phenomena are explained in detail, to aid readers interested in the structure-property symbiosis in semiconducting nanomaterials. In short, the book offers a valuable reference guide for researchers and academics in the areas of material science and semiconductor technology, especially nanophotonics and electronics.

The American edition of this handbook contains concise information on the basic physical properties of the elements and on their chemical characteristics. In general, the data selected for inclusion in the handbook are those which either agree well with calculated data (in those cases where calculations could be carried out) or satisfy various correlations, particularly those based on concepts of the distribution of valence electrons of isolated atoms in the formation of a condensed state, as electrons localized at atomic ions in the form of energetically stable configurations, and as nonlocalized electrons. The Russian edition was published in the USSR in 1965, and new or previously omitted data have been added to all the sections of the present edition. In addition, the authors have considered it necessary to include a series of new sections. Thus, a new table has been included, "Electronic Configurations and Ground States of Free Atoms and Their Ions," since, in the ionization of some atoms (particularly for transition metals), the electrons are not always abstracted from the outer shell, and, consequently, calculation of the ground state (electron energy level) using the usual vector model does not give a direct result. The ground states are obtained experimentally and the table contains the corresponding data on the configurations and states of triply-ionized atoms (which is usually sufficient).

Pulsed laser-based techniques for depositing and processing materials are an important area of modern experimental and theoretical scientific research and development, with promising, challenging opportunities in the fields of nanofabrication and nanostructuring. Understanding the interplay between deposition/processing conditions, laser parameters, as well as material properties and dimensionality is demanding for improved fundamental knowledge and novel applications. This book introduces and discusses the basic principles of pulsed laser-matter interaction, with a focus on its peculiarities.
Read Book Pulsed Laser Ablation In Liquid Based Synthesis Of Nanoparticles Synthesis And Optical Properties Of Metal Oxide Nanoparticles And Gold Metal Oxide Nanocomposites and perspectives compared to other conventional techniques and state-of-the-art applications. The book starts with an overview of the growth topics, followed by a discussion of laser-matter interaction depending on laser pulse duration, background conditions, materials, and combination of materials and structures. The information outlines the foundation to introduce examples of laser nanostructuring/processing of materials, pointing out the importance of pulsed laser-based technologies in modern (nano)science. With respect to similar texts and monographs, the book offers a comprehensive review including bottom-up and top-down laser-induced processes for nanoparticles and nanomicrostructure generation. Theoretical models are discussed by correlation with advanced experimental protocols in order to account for the fundamentals and underline physical mechanisms of laser-matter interaction. Reputed, internationally recognized experts in the field have contributed to this book. In particular, this book is suitable for a reader (graduate students as well as postgraduates and more generally researchers) new to the subject of pulsed laser ablation in order to gain physical insight into and advanced knowledge of mechanisms and processes involved in any deposition/processing experiment based on pulsed laser-matter interaction. Since knowledge in the field is given step by step comprehensively, this book serves as a valid introduction to the field as well as a foundation for further specific readings.

Plasma engineering is a rapidly expanding area of science and technology with increasing numbers of engineers using plasma processes over a wide range of applications. An essential tool for understanding this dynamic field, Plasma Physics and Engineering provides a clear, fundamental introduction to virtually all aspects of modern plasma science and technology, including plasma chemistry and engineering, combustion, chemical physics, lasers, electronics, methods of material treatment, fuel conversion, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics, many helpful numerical formulas for practical calculations, and an array of problems and concept questions.

Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare.

Shortly after the demonstration of the first laser, the most intensely studied theoretical topics dealt with laser-matter interactions. Many experiments were undertaken to clarify the major ablation mechanisms. At the same time, numerous theoretical studies, both analytical and numerical, were proposed to
describe these interactions. These studies paved the ways toward the development of numerous laser applications, ranging from laser micro- and nanomachining to material analysis, nanoparticle and nanostructure formation, thin-film deposition, etc. Recently, more and more promising novel fields of laser applications have appeared, including biomedicine, catalysis, photovoltaic cells, etc. This book intends to provide the reader with a comprehensive overview of the current state of the art in laser ablation, from its fundamental mechanisms to novel applications.

This monograph presents a comprehensive description of the theoretical foundations and experimental applications of spectroscopic methods in plasma physics research. The first three chapters introduce the classical and quantum theory of radiation, with detailed descriptions of line strengths and high density effects. The next chapter describes theoretical and experimental aspects of spectral line broadening. The following five chapters are concerned with continuous spectra, level kinetics and cross sections, thermodynamic equilibrium relations, radiative energy transfer, and radiative energy losses. The book concludes with three chapters covering the basics of various applications of plasma spectroscopy to density and temperature measurements and to the determination of some other plasma properties. Over one thousand references not only guide the reader to original research covered in the chapters, but also to experimental details and instrumentation. This will be an important text and reference for all those working on plasmas in physics, optics, nuclear engineering, and chemistry, as well as astronomy, astrophysics and space physics.

There is a high demand for antimicrobials for the treatment of new and emerging microbial diseases. In particular, microbes developing multidrug resistance have created a pressing need to search for a new generation of antimicrobial agents, which are effective, safe and can be used for the cure of multidrug-resistant microbial infections. Nano-antimicrobials offer effective solutions for these challenges; the details of these new technologies are presented here. The book includes chapters by an international team of experts. Chemical, physical, electrochemical, photochemical and mechanical methods of synthesis are covered. Moreover, biological synthesis using microbes, an option that is both eco-friendly and economically viable, is presented. The antimicrobial potential of different nanoparticles is also covered, bioactivity mechanisms are elaborated on, and several applications are reviewed in separate sections. Lastly, the toxicology of nano-antimicrobials is briefly assessed.

Graphene is an attractive alternative material for diverse applications in electronic devices, fuel cells, biomedical sensors, energy storage, and supercapacitors due to its exceptional thermal, electrical, optical and mechanical properties. This material can be synthesized by many effective methods such as chemical vapor deposition (CVD), micromechanical exfoliation of graphite, and reduction of graphene oxide. Each of these methods has its advantages and disadvantages. This thesis investigates a novel and clean approach to grow graphene directly from bulk graphite. This thesis attempts to interpret three main aspects of graphene growth: the advantages of the use of the PLAL
approach and how it overcomes some of the reported challenges in graphene growth processes; the function of the contribution of different polymers which enhances the formation efficiency, and prevents agglomeration of carbon-based materials of the prepared GNP. Finally, the potential recipe that had been used for growing high quality graphene, with controllable thickness and particle size, was employed in the results section of this thesis.

Cavitation and Bubble Dynamics deals with fundamental physical processes of bubble dynamics and cavitation for graduate students and researchers.

A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.

Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction.

Based on a fundamental understanding of the interaction between bacteria and nanomaterials, this book highlights the latest research on the antimicrobial properties of nanomaterials and provides an invaluable blueprint for improving the antimicrobial performance of devices and products. This book introduces the reader to the progress being made in the field, followed by an outline of applications in different areas. Various methods and techniques of synthesis and characterization are detailed. The content provides insight into the ongoing research, current trends, and technical challenges in this rapidly progressing field. Therefore, this book is highly suitable for materials scientists, engineers, biologists, and technologists.

The basic mechanisms of pulsed laser ablation in liquids (PLAL) as a method for the synthesis of nanoparticles (NPs) were considered. Physical and chemical
processes occurring during the PLAL that determine the formation, composition and structure of the nanoparticles obtained are described. The influence of the composition and properties of the target material, the solvent and the characteristics of the laser irradiation on the efficiency of the synthesis of nanoparticles is discussed. Separately, an influence of the absorption and scattering (including nonlinear) of laser radiation in the dispersion of nanoparticles on the primary synthetic processes and secondary transformations inside the colloidal solution is examined. The specificity of the characterization of the colloidal solutions of oxide particles produced by PLAL is highlighted. The most promising practical applications of nanomaterials obtained are identified and the examples of their successful use in catalytic research and biomedicine are provided.

The pulsed laser ablation in liquid media (PLAL) is a rapidly emerging technique in material science for fabricating metal and metal-oxide nanoparticles. The advantage of this method over the conventional chemical methods is the lower cost, high purity and absence of defects in the formed nanoparticles (NPs). The technique requires the minimum amount of chemical species for synthesis compared to the conventional chemical process and provides greater flexibility in controlling the properties of NPs by suitable choice of laser parameters and liquid medium. This work discuss effect of various laser parameters, surrounding liquid and surfactants on synthesized metal oxide nanostructures. Different approaches to extend PLAL technique to multicomponent material fabrication has been discussed. These multicomponent nanocomposites exhibit modified optical properties, enhanced stability and functionalities.

Nanoalloys, Second Edition, provides a self-contained reference on the physics and chemistry of nanoscale alloys, dealing with all important aspects that range from the theoretical concepts and the practical synthesis methods to the characterization tools. The book also covers modern applications of nanoalloys in materials science, catalysis or nanomedicine and discusses their possible toxicity. Covers fundamentals and applicative aspects of nanoalloys in a balanced presentation, including theoretical and experimental perspectives Describes physical and chemical approaches, synthesis and characterization tools Illustrates the potential benefit of alloying on various applications ranging from materials science to energy production and nanomedicine Updates and adds topics not fully developed at the time of the 1st edition, such as toxicity and energy applications

A "back-to-basics" guide to opto-electronic circuit design and construction. To successfully build and optimize opto-electronic circuits, you need to understand both the fundamentals of optics and electronics. Applied Electro-Optics provides engineers, designers and technicians with a firm background in both optical physics and circuit design. In Part I, the book introduces the basic theory of opto-electronics, including: Maxwell's equations and the wave nature of light Reflection and refraction, with extensive coverage of Snell's Law Interference phenomena and the Fabry-Perot interferometer Diffraction effects and diffraction gratings Polarization and electro-optic modulation Photons, basic quantum theory, and spectroscopic techniques Then, in Part II, the book introduces each major element of an electro-optic system. Understand semiconductor light sources such as LEDs and diode lasers. Consider optical
transmitters and discover how to minimize the impact of electromagnetic interference through careful circuit location, grounding, and shielding. Review the basic structure and operation of photodiodes, phototransistors, optocouplers, and photoconductors. Then, learn practical techniques for managing the trade-offs required to integrate these devices into useful circuits. A full chapter on optical transmitters demonstrates how to integrate photodetectors into useful receiver circuits; both amplifier and hybrid circuits are covered. Finally, walk step-by-step through building and optimizing circuits for a variety of applications, including CD players and infrared data transmission. If your goal is to build the best possible opto-electronic circuits or just to understand how they operate, Applied Electro-Optics delivers just the right balance of theory and practice to help you.

Laser ablation in liquid is becoming an important technique for the generation of nanoparticles (NPs). Until now only pulsed lasers have been used; this is a pioneer work, using high-power, high-brightness continuous-wave (CW) fibre laser ablation in liquid, for the generation of NPs. A mechanism is proposed based on experimental observations, including high-speed imaging and emission spectroscopic analysis of the ablated plume. Three different target materials (Titanium, Nickel and Alpha-aluminium-oxide), submerged in either water or sodium dodecyl sulphate (SDS) solution at various concentrations were used. The characterisation of the generated metal-oxide NPs, in terms of size, size-distribution, shape, chemical composition and phase structure was carried out by UV-Vis photo-spectroscopy, transmission electron microscopy (TEM), high-resolution TEM with energy-dispersive X-rays spectroscopy and X-ray diffraction. This study paves a route towards a new application of CW fibre lasers. The book is useful to engineering students, professional engineers, researchers, academicians and scientists in materials, NPs characterisation, mechanical, laser processing and related disciplines.

This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization. Key Features: • Offers a complete update of the original, bestselling work, including many brand-new chapters. • Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. • Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. • Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. • Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
This book presents the most relevant and recent results in the study of “Nanoelectromagnetics”, a recently born fascinating research discipline, whose popularity is fast arising with the intensive penetration of nanotechnology in the world of electronics applications. Studying nanoelectromagnetics means describing the interaction between electromagnetic radiation and quantum mechanical low-dimensional systems: this requires a full interdisciplinary approach, the reason why this book hosts contributions from the fields of fundamental and applied electromagnetics, of chemistry and technology of nanostructures and nanocomposites, of physics of nano-structures systems, etc. The book is aimed at providing the reader with the state of the art in Nanoelectromagnetics, from theoretical modelling to experimental characterization, from design to synthesis, from DC to microwave and terahertz applications, from the study of fundamental material properties to the analysis of complex systems and devices, from commercial thin-film coatings to metamaterials to circuit components and nanodevices. The book is intended as a reference in advanced courses for graduate students and as a guide for researchers and industrial professionals involved in nanoelectronics and nanophotonics applications.

A comprehensive overview of what is required to set up and begin research in this newly developing technology and understand the basics of the process. Internationally recognized experts in their fields cover such fundamentals as history, theory, film characteristics, surface modification, laser technology, materials and applications including excellent reviews regarding the entire areas of semiconductor buffer layers, thin-film ferroelectrics and ferrites along with the work involving films deposited by PLD.

Pulsed lasers are available in the gas, liquid, and the solid state. These lasers are also enormously versatile in their output characteristics yielding emission from very large energy pulses to very high peak-power pulses. Pulsed lasers are equally versatile in their spectral characteristics. This volume includes an impressive array of current research on pulsed laser phenomena and applications. Laser Pulse Phenomena and Applications covers a wide range of topics from laser powered orbital launchers, and laser rocket engines, to laser-matter interactions, detector and sensor laser technology, laser ablation, and biological applications.

This Handbook covers all aspects of Nanoparticles, from their preparation to their practical application. The chapters present different ways to synthesize nanometer particles, as well as their functionalization and other surface treatments to allow them to a practical use. Several industrial applications of such nanometer particles are also covered in this Handbook. It is a complete reference for those working with Nanotechnology at the lab level, from students to professionals.

This edited book focusses on green chemistry as the research community endeavours to create eco-friendly materials and technologies. It provides an in-depth overview of the fundamentals, key concepts and experimental techniques
for eco-friendly synthesis of organic compounds and metal/metal oxide nanoparticles/nanomaterials. It also emphasizes the mechanisms, designing and industrial technologies for green synthesis and its applications. Each chapter brings the recent developments, state of the art, challenges and perspectives which cover all the aspects in one place, and which concern the green synthesis and evolution. Authored by world-renowned experts in a broad range of green chemistry sectors, this book is an archival reference guide for researchers, engineers, scientists and postgraduates working in the field of sustainable science, green chemistry, environmental science, engineering sciences and industrial technologies.

Edited by major contributors to the field, this text summarizes current or newly emerging pulsed laser deposition application areas. It spans the field of optical devices, electronic materials, sensors and actuators, biomaterials, and organic polymers. Every scientist, technologist and development engineer who has a need to grow and pattern, to apply and use thin film materials will regard this book as a must-have resource.

The first in-depth treatment of the synthesis, processing, and characterization of nanomaterials using lasers, ranging from fundamentals to the latest research results, this handy reference is divided into two main sections. After introducing the concepts of lasers, nanomaterials, nanoarchitectures and laser-material interactions in the first three chapters, the book goes on to discuss the synthesis of various nanomaterials in vacuum, gas and liquids. The second half discusses various nanomaterial characterization techniques involving lasers, from Raman and photoluminescence spectroscopies to light dynamic scattering, laser spectroscopy and such unusual techniques as laser photo acoustic, fluorescence correlation spectroscopy, ultrafast dynamics and laser-induced thermal pulses. The specialist authors adopt a practical approach throughout, with an emphasis on experiments, set-up, and results. Each chapter begins with an introduction and is uniform in covering the basic approaches, experimental setups, and dependencies of the particular method on different parameters, providing sufficient theory and modeling to understand the principles behind the techniques.

This book gives the readers an introduction to experimental and theoretical knowledge acquired by large-scale laser laboratories that are dealing with extra-high peak power and ultrashort laser pulses for research of terawatt (TW), petawatt (PW), or near-future exawatt (EW) laser interactions, for soft X-ray sources, for acceleration of particles, or for generation of hot dense thermal plasma for the laser fusion. The other part of this book is dealing with the small-scale laser laboratories that are using for its research on commercial sources of laser radiation, nanosecond (ns), picosecond (ps), or femtosecond (fs) laser pulses, either for basic research or for more advanced applications. This book is divided into six main sections dealing with short and ultrashort laser pulses, laser-produced soft X-ray sources, large-scale high-power laser systems, free-electron lasers, fiber-based sources of short optical pulse, and applications of short pulse lasers. In each chapter readers can find fascinating topics related to the high energy and/or short pulse laser technique. Individual chapters should serve the broad spectrum of readers of different expertise, layman, undergraduate and postgraduate students, scientists, and engineers, who may
in this book find easily explained fundamentals as well as advanced principles of particular subjects related to these phenomena.

Laser ablation refers to the phenomenon in which a low wavelength and short pulse (ns-fs) duration of laser beam irradiates the surface of a target to induce instant local vaporization of the target material generating a plasma plume consisting of photons, electrons, ions, atoms, molecules, clusters, and liquid or solid particles. This book covers various aspects of using laser ablation phenomenon for material processing including laser ablation applied for the deposition of thin films, for the synthesis of nanomaterials, and for the chemical compositional analysis and surface modification of materials. Through the 18 chapters written by experts from international scientific community, the reader will have access to the most recent research and development findings on laser ablation through original research studies and literature reviews.

Nothing stays the same for ever. The environmental degradation and corrosion of materials is inevitable and affects most aspects of life. In industrial settings, this inescapable fact has very significant financial, safety and environmental implications. The Handbook of Environmental Degradation of Materials explains how to measure, analyse, and control environmental degradation for a wide range of industrial materials including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors such as weather, seawater, and fire. Divided into sections which deal with analysis, types of degradation, protection and surface engineering respectively, the reader is introduced to the wide variety of environmental effects and what can be done to control them. The expert contributors to this book provide a wealth of insider knowledge and engineering knowhow, complementing their explanations and advice with Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensures that the reader understands the practical measures that can be put in place to save money, lives and the environment. The Handbook's broad scope introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete, wood and textiles. For each type of material, the book describes the kind of degradation that effects it and how best to protect it. Case Studies show how organizations from small consulting firms to corporate giants design and manufacture products that are more resistant to environmental effects.

Smart Nanoparticles for Biomedicine explores smart nanoparticles that change their structural or functional properties in response to specific external stimuli (electric or magnetic fields, electromagnetic radiation, ultrasound, etc.). Particular attention is given to multifunctional nanostructured materials that are pharmacologically active and that can be actuated by virtue of their magnetic, dielectric, optically-active, redox-active, or piezoelectric properties. This important reference resource will be of great value to readers who want to learn more on how smart nanoparticles can be used to create more effective treatment solutions. Nanotechnology has enabled unprecedented control of the interactions between materials and biological entities, from the microscale, to the molecular level. Nanosurfaces and nanostructures have been used to mimic or interact with biological microenvironments, to support specific biological functions, such as cell adhesion, mobility and differentiation, and in tissue
healing. Recently, a new paradigm has been proposed for nanomedicine to exploit the intrinsic properties of nanomaterials as active devices rather than as passive structural units or carriers for medications. Discusses the synthesis, characterization and applications of a new generation of smart nanoparticles for nanomedicine applications Explores the problems relating to the biocompatibility of a range of nanoparticles, outlining potential solutions Describes techniques for manipulating specific classes of nanoparticles for a variety of treatment types

Titanium dioxide is currently being used in many industrial products. It provides unique photocatalytic properties for water splitting and purification, bacterial inactivation, and organics degradation. It has also been widely used as the photoanode for dye-sensitized solar cells and coatings for self-cleaning surfaces, biomedical implants, and nanomedicine. This book covers various aspects of titanium dioxide nanomaterials including their unique one-dimensional, two-dimensional, mesoporous, and hierarchical nanostructures and their synthetic methods such as sol-gel, hydrothermal, anodic oxidation, and electrophoretic deposition, as well as its key applications in environmental and energy sectors. Through these 24 chapters written by experts from the international scientific community, readers will have access to a comprehensive overview of the recent research and development findings on the titanium dioxide nanomaterials.

Nanostructuring of materials is a task at the heart of many modern disciplines in mechanical engineering, as well as optics, electronics, and the life sciences. This book includes an introduction to the relevant nonlinear optical processes associated with very short laser pulses for the generation of structures far below the classical optical diffraction limit of about 200 nanometers as well as coverage of state-of-the-art technical and biomedical applications. These applications include silicon and glass wafer processing, production of nanowires, laser transfection and cell reprogramming, optical cleaning, surface treatments of implants, nanowires, 3D nanoprinting, STED lithography, friction modification, and integrated optics. The book highlights also the use of modern femtosecond laser microscopes and nanoscopes as novel nanoprocessing tools.

Copyright code: fa1b5044bd47b8fa4a331458d45864aa